Insides out

Some of the most challenging things to teach in biology are those that we can’t easily see. Maybe they are microscopic, at the cellular or molecular level. Or, they exist in an inaccessible place, such as inside an animal’s body. Finding ways to bring such concepts to life, to create projects that animate and demonstrate their relevance is a vital part of teaching.

Back in my grandmother’s time, students of natural history kept meticulous notebooks detailing their observations and reflections.

In her “National Biology Note-book” completed by my grandmother in high school, a preface explains the importance of developing inductive reasoning skills through structured laboratory exercises rather than using the “verification method” of simply memorizing facts. While facts are quickly forgotten, asserts the author, “training the young mind to see accurately and think clearly” should result in deeply-ingrained scientific habits of observation and logical reasoning.

To find amoeba or paramecia, the note-book suggests, scoop some old leaves from a stagnant pool, boil up a hay infusion, and see what shows up. The same strategies work 100 years later. And, if DNA had been known in those years, I bet they would have used the same “pea soup” extraction that we do today.

.dan extraction

Working at the elementary level, I am always searching for fun projects that can help teach anatomy. Last year, students made life-size skeletons from recycled materials while learning the name for each of the bones. Related learning opportunities often arise serendipitously. We recently decided that it was time to disinter the squirrel that we had buried in the pine woods last fall, and carefully collected the bones. We are now in the process of reconstructing the squirrel’s skeleton, naming the bones as we go.  It’s a treasure hunt for puzzle pieces.

This year in the younger classes we are focusing more on the “squishy bits,” the internal organs. We are taking a comparative approach to this project, so that we can understand how the same or similar organs look and function in different organisms. To do this, we are creating “Operation” games; each student selects an animal, researches and draws its internal anatomy, and then cuts the organs out carefully from a recycled pizza box.

Because we have also worked on creating simple electric circuits, we are wiring the animal anatomy boxes so that, as in the classic Operation game, each organ must be removed very carefully so as not to set off an alarm buzzer.giraffe operation

When my grandmother graduated from high school in 1909, she wrote an essay entitled “Learning by Doing,” in which she described a progressive philosophy that would soon inform her own practice as a teacher.  I’m not sure what she would think of all the new-fangled technologies that I am using with my classes, but I hope that she would see them fulfilling the final words of her essay: a child “who formerly could see nothing in anything now sees something in everything…”




Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s