Back to school

321337_164792200264953_1175651_nThe first day of school is always momentous, whether it’s your first as a student or your thirty-first as a teacher.


Jemicy’s first day of school this year was a scorcher. The few moments we spent exploring outside required short hops from one shady spot to the next. Still, those spots held the magic of new discoveries.

Under logs: Dozens of nightcrawlers the size of small snakes -“Worm City!”


In the milkweed bed: “1,2,3,4…… 15 monarch caterpillars!”

monarch caterpillar

Along the bank of the tiny pond that the wet summer left below the soccer field: “A frog! Tadpoles! Dragonflies!” For licorice lovers, there was plenty of Perilla to sample.

Under a rock: “Weird bug!”

Platydracus maculosus
Platydracus maculosus


During recess, we sought shade under a small cherry tree. One person spotted something fuzzy on the ground – a desiccated caterpillar. This discovery quickly led to another unfamiliar caterpillar curled by a rock, then a leaf-like planthopper, a picture-winged fly, some foraging ants, and an orange-headed leafhopper – all under the sparse canopy of the cherry tree. Several of these discoveries turned out to be new species for our biodiversity checklist, including a new county record!

“This,” declared a new M Grouper, “must be the Tree of Life.”

The rest of the week delivered more new sensations: monarch butterflies emerged and flew in greater numbers than I ever recall seeing before; striped oakworm caterpillars were caught scurrying through the grass, praying mantises prowled along walls and shrubs, a tiny saddleback caterpillar hitched a ride into the classroom on a potted fern; sassafras leaves announced their fall color change; a toad shared space with potential dinner companions.

Such an auspicious beginning to a new school year, and every bit as memorable as a new lunchbox.


50 plants

“Why will we ever need to know this?”

It was Day 1 of our “50 Plants in 20 Days” identification challenge that takes place in the last weeks of school. I had started off by asking my 4th graders to look around and name any plants they already knew. “Grass?” suggested one.

That’s when I got that question. Most teachers hear it sometime (or many times) in their profession. I remember posing it to my math teacher in high school. “Because you never know when you might need to…uh… solve a differential equation,” was his unconvincing response.

So when I got that question on Day 1, I paused, then said, “I don’t know exactly how you might need to know these particular plants in the future,” I said. “But you might want to.”


I pointed toward the wooded expanse where I knew he and his friends enjoyed spending recess. “What do you call that?”

“The woods.”

“Do you know the name of anything you see?”


“Can you name some things you enjoy doing there?”

“Collecting buckeyes. Building forts.”

“What if you knew what a buckeye tree looked like?”

A pause. “Oh… I get it. I’d make my fort underneath it, so the buckeyes would fall right into my fort!”


This naming challenge is structured around affordances – opportunities for meaningful interaction with one’s environment. Can the plant be smelled, eaten, played with, climbed on? Can an encounter with it cause discomfort? Does it have parts that can be counted, admired for their beauty, or disliked for their invasive habits? Does it attract pollinators, repel pests, or cling to your clothes? Can you think of a way for this plant to be meaningful to you?

One of the best hooks to hang an identity on is a plant’s story.  Once you know that multiflora rose was imported as a “living fence” to substitute for barbed wire during a time of metal shortage, it is hard to see those thorny stalks as anything else.

mf rose.jpg

Other stories appeal through pure folklore. Does your chin turn yellow when you hold a buttercup under it? Obviously, you love butter.

Stories sometimes change from one year to the next; we can create new ones as we experience the plant together. White pine trees became known this year as “pollen bombs” when the kids watched me detonate a branch by shaking it.  “Susan and Joe” (Black-eyed Susan and Joe-pye weed) moved into the neighborhood, settled in a new perennial garden, and produced lots of little Susans and Joes.

Taste and smell seal the deal for instant recognition. If a plant has scented or edible parts, its identity becomes one with that sensory encounter. Sourgrass, spicebush, garlic mustard, mulberries, mint, serviceberries – each has a place in the shared experience of our schoolyard, and the memory of its appeal passes along through its common name from one group to the next.

Honeysuckle, of course, is a classic  favorite. Once a child locates a patch in bloom, others swarm like bees to collect the nectar. One of my favorite parts of these seasonal rituals is observing how eagerly experienced kids transmit lore to newcomers. “Go like this. Pull on the end of the honeysuckle and a string comes out with nectar. Or, just suck it out.”

On Day 20 of the plant challenge, there was a final group field test. Students used the annotated field guides they had created and were encouraged to share their ideas with each other before writing down their identifications. I watched them examine and analyze leaves, review the stories they had heard, ask to smell or taste a leaf, and discuss possibilities.

“That is so poison ivy – see the three leaves?”

“But it has thorns, and white flowers.”

“Oh, right – then blackberry? Poison ivy doesn’t look bad for you, but it is, and blackberry looks bad for you, but tastes good.”


“What about this one with the camo bark?”

fresh bark

“I think it’s sycamore – like, I’m sick of camo and I can’t take it any more!

At the end, when the class had successfully identified all 50 plants on our list, I paused on the hill overlooking the woods. I reminded them of where we had started a few weeks ago – “grass?” – and asked, “Now what do you see?”


“Multiflora rose, redbud, tree of heaven, princess tree, box elder, clover, plantain, honeysuckle …”

“But aren’t there more than 50 kinds of plants at Jemicy?” someone asked. “When can we learn the rest?”

On the last day of school, this question means Objectives Met.


Flower Power

Spring has been a long time getting here this year. I was so used to snowflakes blowing by my classroom windows – just last week! – that the sight of petals sailing past took awhile to register. What? Some tree had already bloomed, and I failed to notice?


I took a hike along the Gunpowder River, searching for spring ephemerals. The floodplain, usually filled with color at this time, seemed drab. And then, one by one, they caught my eye.

A later hike through the serpentine barrens of Soldier’s Delight turned up a similar delay in flowering. Still, the small bursts of brightness in this dry landscape were well worth the hunt.

Determined not to miss another spring beacon, all my classes went outside this week to find flowers. Like a swarm of famished insects, we descended on the dandelions and violets, the ground ivy and dead nettle, the peach, serviceberry, and crabapple trees. We looked for specific colors, smells, textures, and tastes, compared structures, considered the effects of landscape changes and recent weather.

Several classes dissected flowers to find their reproductive parts, the prominent pollen-laden anthers and tiny hidden ovules. We cut open fruit to see what characteristics the developed ovaries of angiosperms had in common, and which were different.

I realized by the end of the week, when I was searching our biodiversity Flickr album, that my photographs containing flowers were rarely about the flowers themselves, but more often featured an insect, with the flower that it was pollinating  given little, if any, notice. And yet, flowers are clearly essential, their attractive qualities vital to perpetuating their own and others’ lives – including ours. We usually take for granted the fruits of their labors.

seed question

So here, along with this seventh grader’s food for thought, is a collection-in-progress of some of the flower (and pollinator) power found at Jemicy in the past several years.


Location, etc.

A thick blanket of snow muffled the usual sounds as I walked outside on this first morning of spring in Maryland. And then, from a protected perch among the holly boughs, came the distinctive, 3-part song of a cardinal that was quickly answered in kind from a neighboring tree: “LOCATION! LOCATION! LOCATION!”

A late snowstorm can’t deter the territorial instincts so prevalent among birds this time of year. I watched both male and female cardinals take turns making forays out from the holly trees to the bird feeder, then dash back to protect their space from intruders. Whether they had already begun nest-building before the storm is uncertain, but they must have selected an ideal location worth defending.

The housing market for cavity nesting birds took a hit this winter in the Jemicy woods. Powerful wind storms brought down several tall trees with hollows that had provided snug nesting sites for local chickadees, tufted titmice and bluebirds. We try to help remedy this loss by building and installing nest boxes around campus every year in early spring. This also gives us the opportunity to more closely monitor the progress of different birds as they raise their families.


Sometimes these houses are co-opted by other animals with their own nesting needs. When we were checking old boxes this week (Rule 1: always knock first), we found one stuffed full of dried leaves and other nest materials. Something was moving around inside: Chipmunk? Mouse? Flying squirrel? We carefully closed the box and left the new resident’s identity a mystery.

Pileated woodpeckers develop much of the real estate that is sought after by cavity nesters. Once a desirable location is identified, a thorough inspection must take place. These bluebirds seemed to have a difference of opinions about this particular site. The male recommended it enthusiastically, hopping in and out, encouraging the female to step in for a tour. She, however, was not convinced, and flew off after a cursory peek inside.

A pair of doves made their decision more readily. After sitting together quietly on a branch by a lake, the male hopped over to a nest that appeared to have been constructed last year by a different bird. It was a neat cup of mud and grass such as a robin might build, but the doves had added a few extra twigs – the perfect renovation. The female dove stepped in and settled herself comfortably into the nest, while the male sealed the deal by giving her a good preening.

doves 4


Flitting about just over their heads, a mockingbird protested loudly. Had he already claimed this location? The doves were oblivious to his noise. Meanwhile, hopeful sparrows positioned themselves prominently for their own call and response ritual. As soon as one song finished, another sounded off. One young sparrow seemed to find this frustrating; every time he would open his beak, another nearby male would steal his song space. He finally let out a quavery burst of song, then left to try his luck in other territory.



February is a good month for cravings, especially sugar. Flocks of robins and cedar waxwings descend on trees and vines that still hold fruit. Acrobatic bluebirds snag berries on the wing. Yellow-bellied sapsuckers leave rows of holes to do what their name implies.

Jemicy kids follow suit. Sugar maples are uncommon at school, so instead we pay a visit to the red maples (Acer rubrum) and box elders (Acer negundo) that are plentiful on our campus. Maryland’s sap flow is unpredictable and often brief; a stretch of temperatures below freezing at night and above freezing during the day rarely lasts long enough to deliver much sap unless you can collect from large numbers of trees. Last year, we arrived in mid-February with our spiles and buckets only to find that the trees were already beginning to flower. This year, we watched the forecasts closely. Well in advance of the proper temperatures, we had prepared our repurposed yogurt buckets and fashioned bamboo spiles.

On Valentine’s Day, we were delighted to find most buckets filled, and before the temperatures soared into the mid-70’s we had managed to get about 4 gallons of sap. While this would not result in more than a half cup of syrup, the entire tapping and evaporating process was well worth it. Every child claimed to be able to taste the sugar in the liquid dripping from the tree, and as we boiled the collected sap in the classroom, we naturally had to sample it periodically as the sugar became more concentrated.

By the end of the sugaring week, several box elder trees in the recess area started seeping sap from splits and broken limbs caused by winter ice damage. The sap fermented as it accumulated on the bark, attracting numerous insects: ants, flies, beetles, and even butterflies.

The butterflies were eastern commas (Polygonia comma), the first of our spring butterflies, and the earliest I had ever seen. The attraction to fermented sap reminded me of a similar phenomenon that I had seen in New Zealand, where red and yellow admiral butterflies would cluster and feed on oozing tree trunks. In fact, red admirals apparently preferred fermented tree sap or fruit to flower nectar. Honeybees, (an introduced species in New Zealand as they are in the US) often joined them.


During the sap flow, I was also taking a weekend beekeeping class. My winter insect deficit had induced a craving that was slightly appeased by listening to Steve, our instructor, talk for hours about social insect behavior and biology, and about early spring nectar sources.

During the second class, he demonstrated how to extract honey, pausing every so often as he slid his knife over the drawn comb to lick a drip from his fingers.

A stray bee appeared from somewhere in Steve’s equipment and flew around him. He chuckled and assured us that the bee would surely be accompanying its honey back home. That urge to collect sugar, whether to feed a colony or one’s own sweet tooth, is hard to deny.

Insides out

Some of the most challenging things to teach in biology are those that we can’t easily see. Maybe they are microscopic, at the cellular or molecular level. Or, they exist in an inaccessible place, such as inside an animal’s body. Finding ways to bring such concepts to life, to create projects that animate and demonstrate their relevance is a vital part of teaching.

Back in my grandmother’s time, students of natural history kept meticulous notebooks detailing their observations and reflections.

In her “National Biology Note-book” completed by my grandmother in high school, a preface explains the importance of developing inductive reasoning skills through structured laboratory exercises rather than using the “verification method” of simply memorizing facts. While facts are quickly forgotten, asserts the author, “training the young mind to see accurately and think clearly” should result in deeply-ingrained scientific habits of observation and logical reasoning.

To find amoeba or paramecia, the note-book suggests, scoop some old leaves from a stagnant pool, boil up a hay infusion, and see what shows up. The same strategies work 100 years later. And, if DNA had been known in those years, I bet they would have used the same “pea soup” extraction that we do today.

.dan extraction

Working at the elementary level, I am always searching for fun projects that can help teach anatomy. Last year, students made life-size skeletons from recycled materials while learning the name for each of the bones. Related learning opportunities often arise serendipitously. We recently decided that it was time to disinter the squirrel that we had buried in the pine woods last fall, and carefully collected the bones. We are now in the process of reconstructing the squirrel’s skeleton, naming the bones as we go.  It’s a treasure hunt for puzzle pieces.

This year in the younger classes we are focusing more on the “squishy bits,” the internal organs. We are taking a comparative approach to this project, so that we can understand how the same or similar organs look and function in different organisms. To do this, we are creating “Operation” games; each student selects an animal, researches and draws its internal anatomy, and then cuts the organs out carefully from a recycled pizza box.

Because we have also worked on creating simple electric circuits, we are wiring the animal anatomy boxes so that, as in the classic Operation game, each organ must be removed very carefully so as not to set off an alarm buzzer.giraffe operation

When my grandmother graduated from high school in 1909, she wrote an essay entitled “Learning by Doing,” in which she described a progressive philosophy that would soon inform her own practice as a teacher.  I’m not sure what she would think of all the new-fangled technologies that I am using with my classes, but I hope that she would see them fulfilling the final words of her essay: a child “who formerly could see nothing in anything now sees something in everything…”





The old “MR DUCKS – MR NOT” joke has just taken on new meaning for me. Over the winter break, I kept an eye on rare bird alerts, hoping that one would pop up in my neck of the woods. I went to a nature center looking for a red-headed woodpecker, to a local pond in search of a snow goose, and a new location – a recently redeveloped lake-filled quarry – hoping to see an out-of-season orange-crowned warbler. None of the hoped-for rarities appeared.

incoming geeseBut at the last site, I was watching the flocks of Canada geese taking off and landing when I noticed smaller waterfowl scattered among them. Whether these were rare, I had no clue. All I really knew for sure was – as they say – MR DUCKS.

While I have learned over the years to identify many birds, there are gaping holes in my waterfowl knowledge. Never having lived nor spent significant time near freshwater or marine habitats, I had less impetus to learn to identify their residents than the ones in my own backyard.  Other than the mallards that I raised and released on our small farm pond as a kid, and the ubiquitous Canada geese, I really don’t know waterfowl.geese mallards

But now, staring out at all these unfamiliar birds in a place almost in my backyard, I felt a challenge rising.  2018: Year of the duck.

For me, close and persistent observation – preferably accompanied by photography, so that I can study images in depth – is the key to really learning species. On my first excursion to the quarry, distinguishing different species was mostly a matter of playing the “One of these things is not like the others” game. In a flock of hundreds, could I discern through binoculars who was different from anyone else?geese 1

Some were divers, some dabblers. Markings were clearly different, but were these due to sex? Age? I photographed lots of birds, hoping the images would help reveal identities.

Back at home, a field guide helped me sort out the various species: bufflehead, hooded merganser, ruddy, ring-necked and redhead ducks.  The next day, I went back. This time, armed with clear search images, I was able to quickly spot and identify all of the same species. The mergansers, tufted hoods prominent, swam and dove in male-female pairs, while the buffleheads dove, popped up, and joined small groupings of other ducks. The ruddy duck bobbed about among the geese like a tiny bathtub toy, head tucked under its wing.ruddy

The birds observed me from a safe distance, moving away whenever I tried to get a closer vantage point, diving and never reappearing where I expected them to be.bufflehead 2 dive

Maybe as they grow accustomed to seeing me, I will become less of a threat. While some birders aim to spot as many species as they can in a year, I am hoping simply to move my knowledge beyond MR DUCKS – MR NOT. The challenge is on.merganser pair





At 11:28 AM on December 21, a long shadow fell across the frozen surface of a shallow pool. Solst…ice.solstice shadow

There is a magical quality to ice, its translucence and shimmer immediately attracting kids who then, of course, need to slide and jump on it, shatter and collect bits of glass

Ice captures and preserves pieces of the past, brings death to some things and new life to others. In the Jemicy stream, frogs, salamanders and aquatic invertebrates wait out winter in the mud below, though sometimes we find them tucked under a log or in a shallow hole, seemingly frozen solid, one with the ice.

cold frog

In my solstice shadow today, I spied movement. There were a few tadpoles wiggling sluggishly in the mud, but other creatures were swimming about just under the ice. A diving beetle made forays back and forth to a submerged log, while backswimmers scooted by near the surface. They slid along the underside of the ice, displaying their greenish ventral side, and then quickly dove away, startled by movement.

There were dozens of them active on a day when the air never got much above freezing, when the great blue heron kept one foot tucked near its warm belly as it ate lunch.

heron vole

The cold wasn’t stopping the spiders either – they were hunting small flies along the bank. I wondered what the water temperature was, and how invertebrates could summon the energy to move at all, let alone actively forage there.


As Sol begins the long arc back up to summer solstice, I’m glad to see ice mark the beginning of winter.




For the past several weekends, sunshine and mild weather have lured me to the fields and forests of Irvine Nature Center. It has been a favorite haunt since the center moved to a state-donated expanse encompassing several hundred acres of former cropland, low-lying woods and wetlands. The land had been logged, drained, and cultivated over the past century for farming, then abandoned.Irvine reforestation

Every time I visit this site, I recall my first time there in 2001, volunteering with a group making preliminary baseline species counts prior to the planned nature center relocation. It was a sunny spring day, red-tailed hawks and turkey vultures circled overhead, and red-winged blackbirds made their raucous territorial displays.

We walked for what seemed like miles through old corn fields, many overgrown with multiflora rose and bordered by drainage ditches. Species counts were low, reflecting the lack of habitat suitable for the butterflies, amphibians, and birds you’d expect to find in open, wet landscape like this. How, I wondered to myself, could this overworked, depauperate tract of land ever provide the rich diversity of living things central to a nature center’s mission?

Then, directly in front of us, a bird I didn’t recognize made a gliding pass across the field, its head lowered to spot small prey, its white rump visible as it banked and veered off at another angle. I was transfixed; it was my first time seeing a northern harrier. If this bird was hunting here, I thought, then there must be more to this place than I could see.

Harriers are still here, gliding serenely amid the ongoing and monumental endeavor that is the restoration of Irvine’s 210 acres to meadow, wetland and forest. Hillsides once dominated by corn are now carpeted in milkweed, coneflower, and other native wildflowers and grasses. Slow-moving water seeps into streams, trickles into pools, and soaks the soil for new stands of sycamore and red maple. During the summer, a green heron frequented the wetlands, and a solitary sandpiper made a stopover on its journey south. Numerous tree swallows hunted here during the summer as well, nesting in the houses and tree hollows available around the site.

tree swallow

Now, even in the near-dormancy of early December, the place hums with expectation and the promise of abundant diverse organisms ready to make the most of new habitat opportunities. I paused by one of the pools, and my shadow caused several tadpoles to dart away from the sun-warmed water at the edge and bury themselves in the muddy bottom. It makes me impatient for spring, anticipating the wealth of amphibian life afforded by reestablishing a more natural flow of water through the landscape.


As I was passing by one of Irvine’s field edges last week, I was startled by a large bird lifting off just in front of me: a great blue heron. It landed not far away and appeared to ignore me as it peered intently into the brush. I sat and watched, wondering what it was hunting. Small rodents? Its stalking motion was barely detectable.

It flew off again making a low circuit, landed, and resumed its hunting, soon joined by another. It was the first time I could recall seeing great blue herons here. Maybe they, too, were reaping the benefits of the reconstructed hydrology.

One of my personal measures of a location’s biodiversity is the length of time that it keeps me in a kind of hunting reverie, my attention captured and held at every step by the life around me. In the early days of visiting Irvine, I might wander along the forest edges watching raptors sailing over the fields, then leave still feeling unsatisfied. Today, I am left more like the land itself: restored.



Fungus among us

“I found a really weird mushroom!” is an announcement heard almost daily during Jemicy’s late fall recesses. Salamanders and frogs have buried themselves in the stream mud for the winter, buckeyes are long since collected by kids or squirrels, and foliage no longer obscures the surfaces and crannies of logs.

There are certain seasons when a “weird mushroom” can mean an edible morel or chicken-of-the-woods that I will likely spirit away to savor at home, but in mid-November, it is something to be wondered at, photographed, used for a spore print, or simply observed.

In the classroom we recently studied fungi firsthand by dissecting mushrooms, experimenting with growing different food molds, and testing yeast’s carbon dioxide production.

The idea that fungi are heterotrophs like us, unable to make their own food through photosynthesis but rather silently gaining nutrients from the environment (which includes other living and formerly living organisms) can make them seem almost insidious. And indeed, the largest living thing recorded is a fungus living in Oregon (Armillaria solidipes) whose mycelium extends for 9.6 square kilometers. It was discovered when scientists went searching for the cause of a large tree die-off and found that the hyphae throughout the area all belonged to the same genetically distinct organism. A truly humongous fungus.

Like the plant blindness that afflicts so many humans living in the industrialized world, fungi are often overlooked, but even more common, it seems, is a reaction of disgust. This may be due to the fact that many fungi are decomposers, and we associate them with decay and potentially deadly toxins if ingested. We also usually notice only the mushrooms – not the primary organism but only its fruiting bodies – which produce spores for reproduction. Fear of poisoning by contact or even proximity prevents many from appreciating the diversity, complexity, and beauty of these organisms, not to mention the unseen but critical role that so many perform in aiding nutrient uptake by plant roots.

As my seventh grade classes were wrapping up our study of fungi, we watched two TED talks that highlighted new perspectives on fungi. The first, by Paul Stamets, described ways that fungi could, in his words, save the world through bioremediation and fighting disease, among other benefits. The second linked our class’s initial study of trees to fungi as Suzanne Simard discussed her experiments with plant communication through an underground fungal network.  Both talks kept the class spellbound. I recommend them as one more way to fully appreciate the fungus among us.